Radiation de pixels, quand la 2d est 3D et vice versa

Suite des articles visant à améliorer l’illumination de la scène, après une couleur diffuse correctement éclairée grâce aux normales et aux spéculaires, il restait, invariablement, que l’image entière était éclairée uniformément concernant l’intensité, pour une même direction de normales.

Mise à plat de la scène pour valider le dégradé de l’intensité.

Les calculs et les informations transmises étaient insuffisantes pour calculer la valeur de chaque pixel et, surtout, rien ne nous permet de savoir où le pixel se situe dans l’espace, nous permettant de faire varier son illumination sur base d’une distance altérée par sa position.

Je ne suis pas 3D

N’oubliez pas que ce que vous voyez n’est pas de la 3D, mais une succession d’images plates représentant « un quelque chose » en 3D, et c’est cet enchevêtrement savamment orchestré qui vous dit que l’image est 3D. Tout n’est qu’illusion Mr. Anderson ! Et votre cerveau vous trompe, et c’est le but !

Je l’ai déjà dit dans les précédents articles, mais c’est là tout le problème, comment donner une information 3D à une image plate ? Certes nous avons les normales pour nous donner la direction, mais qu’en est-il de la position ? Comment puis-je savoir que le haut de mon bloc est une surface au Z équivalant, variant sur X et Y ?

Explication du process depuis le début.

Reprenons depuis le Zébut

Un Tile est l’image représentant une zone, une unité de notre grille. Celle-ci a ses coordonnées X et Y. La distance entre leur position sera de 1 (1x, 1y ou 1x1y).

L’éclairage d’un Tile est soumis à la propagation de la lumière dans le subset de la map courante (cela nous rappelle de vieux souvenir [2018 !]). La propagation reste importante pour savoir quel Tile est impliqué dans l’éclairage (optimisation).

Un subset reprend une partie des éléments du monde concernés par le rendu à l’écran.

On parlera donc de la distance (parcourue ici) entre le Tile que l’on veut éclairer par rapport à la source lumineuse et sa force.

Une lumière peut donc éclairer sur une distance (d) un objet proportionnellement à sa force (S) à cette distance et selon l’intensité (i) de cette lumière. Nous obtenons alors le facteur (f) d’éclairage du pixel (rgb aux coordonnées uv).

f = (1 - (d * (1 / S))) * i

On obtient une valeur (float) allant de 0 à 1, qui sera notre facteur d’éclairage du Tile.

Ça c’était avant

Ce qu’il nous manquait jusque là c’est d’avoir toutes les coordonnées au niveau du shader pour effectuer ce calcul de distance au niveau du pixel.

On calculera ainsi notre distance autrement, c’est-a-dire sur base des coordonnées du Tile (t) et de la lumière (l), sans oublie l’intensité (i).

d = √((l.x - t.x)² + (l.y - t.y)²) * i

Donc on propage, on définit pour chaque Tile concernés les lumières impliquées, on ajoute les informations manquantes jusqu’alors et … ? Ben jusque là rien de nouveau sauf une distance plus correspondante à l’origine mais pas par rapport aux obstacles rencontrés entre la source et l’élément éclairé, car ça, je suis sur que vous les aviez oubliés.

On ne traverse pas un mur, la lumière « contourne » par rebond etc. Donc la propagation reste la bonne manière mais ne donnera pas le bon résultat en isométrique, et j’espère que vous comprenez pourquoi avec toute cette suite d’articles ahah. En bref, on a pas la possibilité de savoir comment la lumière est arrivée à chaque pixel, il faudrait calculer pour chaque objet un pixel de rebond (surement sa normale), balayer ainsi dans tous les sens et à chaque contact : éclairer ce pixel et modifier le rayon pour le faire repartir (couleur, angle, puissance, …), bref on réinventerai un rendu par projection de rayons en 2D sur base d’information 3D stockée dans les textures. Non !

Spatiale 3D dans de la 2D

Ce qu’il nous manque à cette étape est le moyen de faire évoluer notre formule de calcul de la distance pour inclure la position du pixel rendu de notre texture.

Nous avions vu plus haut que le Tile se définit par une position X et Y, ici en sont centre, sur la partie supérieur pour représenter le sol. Nous ne parlerons pas de Z ici mais l’idée sera la même une fois que j’aurais réussi à ramener l’information jusqu’au shader.

Si un Tile est à une distance de 1 de ses voisins alors il a à ses extrémités un delta variable de [-0.5, 0.5] en X et en Y. Z étant, lui, soumis à un facteur d’élévation définit par la scène, ici de 8 pixels, et donc aura une idée différente de sa distance, du moins c’est ainsi que l’élévation avait été définie au tout début.

Nous avions jusque là 3 textures : la diffuse (l’image elle-même), la normale (direction d’éclairage) et le spéculaire (carte de où appliquer le spéculaire). Et bien nous allons en ajouter une nouvelle.

Suivant la même idée que pour la texture de normales, nous réutiliserons notre définition RGB de nos repères : X en rouge, Y en vert et Z en bleu. Pour chaque pixel de l’image nous définirons ainsi sa position relative par une valeur RGB. Ne pas oublier que le centre ne sera pas 0, car nous avons besoin des deltas négatif, ainsi nous commencerons au centre à 128,128,128.

Un programme, un plugin, ou une théorie pour le faire de manière automatique n’existant pas, on va devoir y mettre de l’huile de coude.

Ainsi comme vous pouvez le voir, si on veut s’aider, nous pourrons compter sur les gradient, un bon dégradé bien réfléchi qui sera combiné à une couche supplémentaire. Nous commencerons par le XY et on surcouchera par le Z. Un total de 2h nécessaire avant d’arriver au résultat que voici.

Notre formule de distance peut donc être complétée par cette nouvelle information (pp).

d = √((l.x - (t.x + pp.x))² + (l.y - (t.y + pp.y))²) * i

Ce qui nous donnera sans plus attendre ce premier résultat :

Wow que se passe-t-il ? On a notre dégradé * fête * cependant nous avons un drôle d’aspect sur certain Tile. Notre algo utilise la force (S) pour se propager, mais comme vous l’avez vu, la propagation est plus courte que le segment calculable en ligne droite donc nous arrivons trop court, nous n’avons pas assez s’électionné de Tiles pour notre impact. L’idée serait surement de refaire un calcul sur base de la distance au lieu de calculer le nombre de saut, mais pour le workaround j’ai ajouté +2 à la force (S).

On en profite pour restaurer le calcul du spéculaire maintenant que nous avons de vraies informations et ce foutu éclair blanc au coffre s’en va !

Il y a bien évidemment des effets de bords, comme le fait que la distance parcourue n’étant plus impliquée, si vous fermez la porte, le Tile de l’autre côté sera éclairé comme si vous étiez à côté au lieu d’un faible éclairage (la lumière fait le tour du mur). Les tables clignotent et là je ne sais pas encore pourquoi. C’est plus joli mais moins cohérent. On en revient à l’idée des rebonds, du vecteur qui doit bouger selon l’idée mais rendre chaque Tile cohérent entre eux, là je ne vois pas comment.

J’ai quand même regardé comment ajouter la distance à la formule mais le résultat empirique n’est pas terrible.

Ajouter la distance assombrit la scène

Et en fait si on déplace la lumière selon la distance parcourue dans la même direction, on éloigne alors virtuellement notre Tile voisin. Et ainsi le résultat tiens compte de la distance. Ceci dit l’éclairage en a pris un coup, il y a surement quelque chose à faire avec ça.

lightPos += lightDirection * lights[i].distance;

Pour bien faire il faudra savoir si la distance correspond à un voisin, et ainsi différencier si notre voisin a une distance de 4 ou de 1 et appliquer l’éloignement que dans ce cas. Reste à trouver comment faire.

Et ensuite ?

Comme toujours, quelle est l’étape suivante et comment adresser les nouveaux problèmes, ou ceux mis de côté ? Plus j’avance dans TARS et plus les limites, personnelles et techniques se montrent. Il est grisant de se dire que j’ai relevé un défi qui, selon Google, n’a pas été adressé ou n’est actuellement plus référencé. Il faut aussi se rendre compte de l’effort considérable que cela demanderait si l’on voulait faire un jeu entier ainsi. Et là encore nous n’avons exploré que la lumière (par rapport à l’existant réalisé).

C’est le cœur serré que je me dis que j’ai clôturé cette étape, et qu’il faut, car le temps n’est pas infini, et que je n’ai pas que ce projet à faire, passer à autre chose… Quand je dis « passer à autre chose« , ce n’est certainement pas abandonner Nahyan, certes non ! Mais explorer (enfin) une autre piste que celle de tout faire moi-même, même si je n’ai pas fort le choix. Je ne vais pas en dire plus pour le moment, j’ai déjà commencé à explorer d’autres possibilités et vous raconterais le moment venu.

Cela fait 7 ans que TARS existe, avec une belle pause au milieu, et 2-3 belles phases de développement, comme le passage au WebGL pour adresser les performances sur l’éclairage première version, ou encore la refonte des classes communes pour mieux gérer les données et factoriser le code générique. Et enfin ici, le nouveau système d’éclairage, mais in fine rien de plus, nous n’avons toujours pas vu « Le temple du Prisme« , un HéroQuest ou un Liebesstein.

Qui sait que j’y toucherai par défi encore 😉

Je spécule un scapulaire

J’ai décidé de me pencher sur la question du spéculaire, c’est à dire ajouter un éclat de lumière à certains pixels. Quand on regarde ce que l’on a déjà fait et ce que l’on a trouvé sur le net cela semble facile, du coup, challenge !

Une fois que l’on a calculé la valeur de notre pixel, on a la valeur diffuse, ce qui sera la couleur affichée. Sur base des données que l’on a déjà, comme la lumière (position, vecteur), la normale de notre pixel et l’atténuation (facteur de notre lumière), alors il nous suffit d’une petite formule.

On crée un vecteur (vec3) représentant le point de vue (le nôtre), on le combine au vecteur de la lumière, on normalise, on fait le produit scalaire avec la normale du pixel, on restreint la valeur dans l’intervalle [0, 1] et on l’augmente par un exposant (32, qui peut être de 2 à n suivant l’effet voulu), enfin on l’ajoute à la couleur de manière équivalente aux 3 couleurs RGB pour le tendre vers le blanc, mais on pourrait appliquer un modificateur suivant cette documentation d’Unreal Engine.

Le résultat est blanc ! Sans dégradé ni distinguo, juste blanc ! Là commence une bataille en heures sur des variantes de la formule ou des valeurs des vecteurs. Je vous épargne, c’était « impossible », dans le sens où encore une fois, notre contexte n’est pas le contexte classique 3D et que mes notions de super matheux sont fictives.

Ce blanc est dû à un vecteur, celui du point de vue, et selon ce que l’on met, c’est tout noir ou tout blanc, et comme j’ai chipoté longtemps sans versionner les résultats, je ne peux que vous le raconter. Ensuite j’ai recomposé la couleur diffuse et isolé le spéculaire. Notre ennemi c’est Z, il est imposé à 1 et nous ne gérons pas la hauteur relative actuellement, donc tout est à 1 mais du coup seule la face de « sol » (les normales 0,0,1 soit bleues) sont violemment surchargées.

Démonstration de l’effet spéculaire incorrect pour les normales verticales 0,0,1/bleue

Comme pour la couleur diffuse il nous faudra manipuler le concept. J’en ai été à lire au sujet des produits scalaire et normalisation de vecteur et refaire les calculs à la main, ce qui a aidé, un peu quand même. Ce que j’ai obtenu est un nombre toujours en dessous de 1 (et > 0) ce qui fait qu’élever un 0,x à la puissance 32, le réduira toujours plus (0,0…00x).

La solution, remultiplier ce résultat par 255 pour le renvoyer dans l’espace de valeurs RGB. C’est empirique, mais le résultat donne quelque chose d’intéressant, donc pour une fois qu’on approche d’un truc passable…

Spéculaire sur le coffre, sur sa partie « métallique »

J’en ai profité pour faire quelques textures de normales, ce qui prends, à la main et par pixel, un temps fou. Et vu qu’on fait des modifications de shader et du système de rendu, pourquoi ne pas faire un truc qui n’était pas dans la liste et ajouter une texture de spéculaire, c’est-à-dire une image représentant les zones où appliquer l’effet spéculaire à notre image. Par exemple sur le coffre, ne prendre que les parties métallique.

Ainsi j’ai créé cette image, en utilisant la couche rouge qui peut varier de 0 à 255, ce qui se ramène à une valeur [0,1] permettant de multiplier le résultat spéculaire calculé, tel un facteur spécifique au pixel.

Ainsi, en une seule texture additionnelle et en utilisant les couches RGB de l’image, ainsi que l’alpha (transparence), nous pouvons stocker jusqu’à 4 valeurs permettant d’ajouter des modificateurs visuels à notre texture de base, tel que l’information de hauteur qui nous manque, le spéculaire dont on a parlé, peut-être une information d’ombrage, plutôt que de l’avoir dans l’image rendue, telle qu’actuellement. C’est à voir et investiguer mais ça reste intéressant.

Évidemment charger une énième texture méritait une factorisation côté sprite. On ajoute un type de texture (diffuse, normale, speculaire) en enum et on rend tout le monde meilleur. C’est encore fort « recherche et développement », pas très fini et très améliorable, tout est discutable, mais le résultat apparait 🙂 et ça, c’est bien !

Dernière amélioration, qui se voit sur les murs, ceux en position Est ou Sud, c’est à dire ceux que l’on voit mais qui n’appartiennent pas à notre bloc courant, mais également ceux en Nord et Ouest, mais cette fois sur le bloc courant, ces 4 cas, ne recevaient pas la lumière adéquatement.

Dans le cas du mur à gauche de la porte au début de la vidéo (donc un mur Est, sur le bloc x:1,y:3) on marche à côté sur x:2,y(2,3,4). Le mur était noir car la source de lumière partait de x:2,y3 (par exemple si on est à droite du mur avant la porte), le chemin de la lumière passait à x2:y4, x1:y:4, x1:y:3 et comme c’est un cas Est (ou Sud), ceux-ci ne prennent pas la lumière car « ils tournent le dos » à la case. Sauf que si je suis à côté du mur, d’une case adjacente, je m’attends à ce qu’il reçoive la lumière.

Dans le cas du mur Nord ou Ouest (le mur rouge face au coffre par exemple), vers la fin de la vidéo, coffre fermé, le squelette marche devant, si nous sommes dessus, le mur est noir, du fait que l’origine de la lumière et le mur sont sur la même position et annulent par conséquent leurs vecteurs.

La solution a été de déplacer virtuellement la coordonnée de la lumière par rapport à la zone du bloc occupée (N, S, E, O), ainsi l’effet est correcte.

On est loin d’avoir fini, il reste des textures de normales à faire (et c’est looong), des affinages sur le shader (encore et toujours), et sinon le reste de la liste :

  • Ajouter le tri des lumières, sur l’intensité j’imagine dans un premier temps, et réfléchir au cumul/fusion ensuite,
  • L’axe Z, les hauteurs et peut être les occlusions (on peut rêver),
  • L’éclairage global de la scène (facultatif), c’est déjà elle qui pilote, donc ça devrait être facile.

When the lights are smooth & good

Pour comprendre il faudra plonger dans le passé avec l’article Smooth crimilight, je vous laisse réfléchir aux titres comme d’hab’ :p (merci William Onyeabor). Ce n’est pas un grand article plein de vérités mais un beau « fix » qui mérite son illustration.

Après pas mal d’essais, suite à l’article précédent (Des aNormales), j’ai pu corriger 2 choses importantes :

  • L’intensité des faces éclairées,
  • Le clignotement quand on se déplace.

L’intensité des faces

Quand vous vous éloignez d’une face qui reçoit de la lumière, celle-ci augmentait d’intensité, ce qui est la réaction inverse que celle normalement attendue. Il s’agissait en fait d’une normalisation manquante quant à notre vecteur qui nous donne la direction entre nous et la source de lumière. La distance augmente, donc le vecteur aussi, donc le résultat de la multiplication est pus forte. Si on normalise, seule la direction perdure.

Le clignotement de la mort

En fait, comme nous utilisons une liste de lumières au maximum définit (ici 2), mais que nous pouvons rencontrer plus de lumières que le maximum autorisé (tri des lumières à définir et cumul à calculer), et que pour nous déplacer on divise la lumière en 2 (source et destination directe), nous atteignons le maximum, du coup des lumières manquent pendant le déplacement mais sont présentes à chaque étapes ou à l’arrêt, ce qui nous donne cet effet de clignotement.

Autre point qui perturbait l’affichage était le cumul des 2 lumières pendant le déplacement ce qui a été corrigé, revu, perdu, revenu en arrière, pesté, et au final on en reste avec notre solution d’origine, mais l’explication du maximum de lumières est à tenir en compte.

Le dégradé d’éclairage pendant le déplacement

Tentative de vérification des valeurs des deltas pendant le déplacement entre 2 blocs lors des recherches

Une perte de temps considérable, c’est tout… L’idée était de remplacer les 2 lumières par 1 seule grâce au shader. Mais encore une fois j’ai oublié notre contexte et la transformation de notre idée pour les normales. Donc la solution est de faire comme avant, car on ne peut pas obtenir une information de distance 3D sur l’ensemble des éléments impactés par la lumière, ou il me manque une notion dans le shader et mes calculs, ce qui est plus que probable. Notez que c’est en cherchant à faire ceci que j’ai réglé les autres soucis.

Ceci étant dit, le résultat est tel qu’avant mais avec les normales en plus, donc au final on devrait être content.

Pour la suite, dans l’idée il faut :

  • Faire les textures de normales pour tout ce beau monde,
  • Regarder l’intensité, qui me semble un peu légère par rapport à avant, à comparer une fois qu’on aura tout,
  • Ajouter le tri des lumières, sur l’intensité j’imagine dans un premier temps, et réfléchir au cumul/fusion ensuite,
  • L’axe Z, les hauteurs et peut être les occlusions (on peut rêver),
  • L’éclairage global de la scène (facultatif), c’est déjà elle qui pilote, donc ça devrait être facile,
  • Reste cette histoire de spéculaire, mais le manque de dégradé au résultat malgré les notions de distance me font penser que c’est mort :/ .

Des aNormales

Suite à toute cette énergie de réactivation sur TARS, j’en suis venu à me remettre à rêver et à me demander quels résultats j’aimerai présenter à d’éventuels joueurs (un jour).

Nous sommes dans un univers 2D à l’apparence 3D, donc nous appliquons des principes, des formules, propre à l’univers 2D pour afficher un monde qui se veut 3D. Cependant, et j’en ai déjà parlé précédemment, la lumière est un calvaire. Alors vous me direz que les autres s’en sortent plutôt bien, certes, mais ils « trichent intelligemment », avec un décors en un morceau et plat sur lequel on peut ajouter les éléments qui vont vous immerger (ombre plate rotative sur sol par exemple ou effet de lumière par un calque d’obscurité); alors que TARS se veut proposer une gestion de la hauteur [Z] ce qui est super casse-couille on ne va pas se mentir, mais permet de donner beaucoup plus cette impression de « vraie » 3D.

J’ai donc repensé à mon éclairage et à notre élément de bloc :

Le bloc test

L’image, et c’est important, est rendue uniformément sur base de données calculées au changement dans la scène (déplacement, mouvement de caméra), c’est à dire que virtuellement on va tenir compte d’éléments éclairant, calculer qui est soumis à ces lumières et appliquer un modificateur de couleur, in fine. S’en suit une application par le shader qui va prendre cette information et la mélanger à la couleur d’origine de chaque pixel, en gros.

MAIS, les flancs de ce bloc, ou les côtés des arbres, coffre, murs ou tables, sont éclairés de la même façon que le sol ou le reste de l’image, on n’augmente pas le relief du bloc lui-même mais plutôt sur une vue d’ensemble de la scène.

L’idée est donc de renforcer la notion 3D de l’élément, son volume que l’on devrait percevoir. On le « lit » grâce aux lignes de l’image, notre cerveau comprend la forme, son relief, mais son éclairage est plat. Ce problème existe depuis de nombreuses années dans l’univers des jeux 3D, rappelez vous ces murs plats à la texture de mur, lisse alors que l’image nous indique un relief. Je ne vais pas vous révéler un grand scoop, mais depuis on utilise différentes techniques, comme le displacement mapping ou, dans notre cas, le normal mapping.

Le but du normal mapping est de pouvoir prendre une surface texturée et de vous donner l’impression, par son éclairage, qu’il est en relief. Une application serait de prendre un modèle très détaillé et donc très couteux au rendu, de faire une texture détaillée, de simplifier le maillage drastiquement, et d’appliquer cette texture détaillée, là on a un modèle simple avec un beau niveau de détails, une belle économie de calcul, mais la lumière ? Comment ce modèle va-t-il être éclairé ? Grâce à la texture détaillée, elle donnera, après traitement, des informations permettant de savoir dans quelle direction chaque pixel est orienté, la normal map; et au moment du rendu, grâce à un shader, la texture détaillée sera éclairée pixel par pixel correctement, le résultat sera bluffant et rapide. Pour les détails, internet regorge de ressources à ce sujet, ici je synthétise :).

Ce que la théorie nous apprends sur les textures de normales et leurs directions (source OpenGameArt)
La texture de normales de notre bloc

Alors moquez vous, c’est fait avec paint car je n’avais rien d’autre sous la main. Et, pour accélérer l’article et son mystère, vous l’aurez vite remarqué mais ça n’a pas l’air de coller à la théorie (on y reviendra, moment de solitude). En lisant la théorie vous lirez que l’on va utiliser les valeurs RGB de chaque pixel pour donner une direction spatiale au pixel (son vecteur, sa normale), RGB devient XYZ (la suite plus tard), donc j’ai transposé la théorie à mon plan isométrique, et avec mon cube la couleur est sans appel, on a un X pur (255,0,0 = rouge) sur le franc droite, un Y pur (0,255,0 = vert) sur le flanc gauche et un Z bien plat au dessus (0,0,255 = bleu).

On modifie le code pour charger, stocker, référencer et définir notre texture de normales et l’envoyer jusqu’à notre shader existant (ça a déjà pris pas mal de boulot).

Premier essai de contrôle pour voir que la texture est bien là

Mouai, il y a une couille dans le pâté. Les objets « non cube de sol » ont la texture aussi. Vous le verrez à la déformation (les arbres). Sinon on voit que le coffre éclaire toujours en rouge (la petite part de tarte rouge et bleue).

Premier essai en ne tenant pas compte des objets qui n’ont pas de texture de normales.

Maintenant que j’ai les bonnes infos (si seulement) je me dit qu’on peut tenter d’appliquer ce que les grands esprits ont fait avant moi, je vous épargne le code et les modifs TARS.

Premier essai de rendu avec normales

On a donc une scène qui ne veut pas prendre les flancs des blocs en compte et cumule trop de lumière avec un assombrissement au niveau du coffre qui est étrange. Le reste est noir, non impacté par une lumière, et là on se dit qu’une lumière globale serait intéressant, mais ça ne l’est que dans l’esprit de la scène (un extérieur boisé), donc à laisser à la discrétion de chaque scène.

On isole tout et on essaye de comprendre ce que l’on a

Je retire tout, je laisse le sol et notre héro porteur de la lumière (voq) et on va tenter de manipuler notre shader pour vérifier, car on ne peut pas débugger un shader « pas à pas », malheureusement.

On remet le coffre pour valider la seconde source de lumière
On discrimine les affectés pour afficher et contrôler la portée des effets

Bon, qu’est-ce qu’on essaye de faire ? On a une liste de lumières qui affecte l’éclairage et la couleur de chaque pixel d’un élément rendu (ici notre bloc), ce qui se calcul avec la valeur normalisée de notre pixel de la texture de normales (à la même position bien sur) que l’on veut comparer au vecteur de la source lumineuse (une à une) pour en déduire l’impacte d’éclairage (un peu, beaucoup, passionnément, …) et ainsi composer, lumière après lumière, la couleur finale de notre pixel venant de la texture. Ce sont les normales de la texture de normales qui donneront l’effet de variation d’intensité des flancs.

La théorie 3D nous parle de matrice de l’univers, mais nous sommes à plat, et donc on ne peut pas appliquer simplement la formule, on doit la tordre, et je ne suis pas matheux, alors ça se complique. De plus, comme dit plus haut, on a fait une erreur, notre image représente une dimension isométrique et la texture de normal a été faite en ce sens, après tout, comparer des vecteurs ça devrait rester équivalent. Encore un point qui ne nous aide pas avec les formules (voir les sources en fin d’articles pour les curieux).

Différents tests et autant d’échecs. J’avoue, là, j’ai fait une pause de 2 jours après 2 jours dessus. Il me manque un truc mais je ne sais pas quoi. Les couleurs sont violentes ou noires, les flancs ne se colorient pas comme attendu, tout disparait (noir), … Foutu vecteurs.

Troisième essai où l’impacte des flancs se montre

On arrive enfin à quelque chose, mais en contre partie, les objets sans texture de normales sont noirs, peu grave, ça viendra plus tard. Le truc ? Tout reprendre et reconstruire le shader avec les 2 principes communs aux articles parcouru : normalisation et produit scalaire.

Pour faire simple, on définit notre pixel de texture et notre pixel de la texture de normales (texel), on a 2 vec3 (rgb), on normalise le texel, on crée un vec3 à 0.0 pour notre couleur résultante (donc noir par défaut, cf. la mise en noir cité plus haut), on boucle sur la liste des lumières et pour chaque on calcule un facteur lumière qui est le résultat du produit scalaire de notre normale et de la position de la lumière par rapport au bloc, ce qui nous donne un coefficient que l’on va utiliser pour multiplier le pixel de la texture, la couleur de la lumière, la force de notre lumière avec ce coefficient, ceci ajouté à notre vec3 couleur. Au final on indique d’utiliser ce résultat sans oublier l’alpha de la texture d’origine.

Comme vous le voyez ça clignote, c’est dû à l’ancienne manière de faire le passage de la lumière d’un tile vers un autre, en passant un delta de 0 à 50% jusqu’à changer de tile, pour se faire on ajoute un seconde lumière pour la différence du delta sur l’autre tile. Ce qui nous amène à constater ce qu’il nous manque encore :

  • Transformer le delta et l’envoyer au shader pour le gérer là, sinon nous en revenons au changement sec d’éclairage de tile pendant le déplacement, au lieu du côté doux que l’on a développé.
  • Gérer la hauteur de l’éclairage (Z), mais cela va demander à TARS de passer l’information et d’en tenir compte.
  • J’ai pensé à l’occlusion et au barrage mais ça me parait compliqué à ce stade.
  • Ajouter un éclairage global ? Ça peut-être intéressant pour sa différence.
  • Créer les textures de normales pour les autres objets.
  • Un des articles parle de la lumière spéculaire et je me demande si nous saurions l’ajouter nous aussi.

Voilà donc la semaine de travail sur les normales, avec, heureusement, un résultat encourageant.

Sources

Et si on revenait un peu à TARS

Mélange des origines avec la map de test

Petit point de situation suite à la mise à jour Angular 17. J’ai donc repris le POC TARS et sa carte de départ, j’ai nettoyé quelques POCs (CodingPark et le début du système de particules) et … ça ne marche plus :/ ?

Plus d’une fois j’ai eu le malheur d’un craquage complet avec un beau message d’erreur… et là je valide le fait que le message d’erreur est effectivement amélioré. Alors merci chère mémoire de ne pas m’aider à me rappeler pourquoi j’ai coder ça ainsi et merci les 4 ans passés à évoluer et donc ne plus écrire ou penser de la même manière. Ceci dit j’étais quand même dans le pétrin.

Je dirais principalement que le fait de ne plus compter sur les effets de bords du typage aide pas mal à avoir des soucis, du coup merci le mode stricte ^^. Puis surtout, en terme de documentation c’est tellement plus confortable.

C’est là aussi que l’on voit que l’on code en « happy path » et sans gestion rigoureuse d’erreur sur projet perso. Le « je sais ce que je fais car je l’ai fait » c’est bien, mais 4 ans plus tard… comment dire, ça laisse à désirer. Du coup « oui », TARS a des lacunes. J’ai tenté de dire que le sol était un sol et il n’aimait pas, imaginez ma surprise… et il fallait lui dire que c’était une « image »… logique ! Et pourquoi ? Du fait que la description de l’élément ne répondait pas au standard ISO(métrique) demandé, mais sans gestion d’erreur ça explose ailleurs et tu peux chercher longtemps pourquoi.

Comme le fait de cibler un élément d’un tableau sur son index, de modifier le tableau et d’avoir une erreur d’accès à une méthode sur une instance… tellement évident… heureusement ça c’est le côté POC pour générer la map et tester le moteur, l’idée étant de passer par l’éditeur ensuite qui lui ne fera pas d’erreur. Mais son opérateur, ça…

Ah et en passant, tant qu’à faire de l’amélioration générale, n’oubliez pas que A || B n’est pas pareil que A ?? B (petit lien sympa). Et que les ternaires A ? A : B peuvent devenir A ?? B.

Mais aussi que les pipes RxJs peuvent s’agrémenter de code perso et ainsi pouvoir charger un Object { a: 1, b: 2 } vers un tableau [{ name: a, value: 1 }, {...}].

Ou encore qu’on ne peut pas retourner la déclaration d’un enum pour accéder à ses clefs (return SO0), mais qu’il faudra retourner ses clefs directement (return Object.values(SO0)).

Enfin voilà, en gros, tout est une bonne grosse question de type et de ce que l’on peut faire avec. Il y aurait encore à en dire, mais au final je n’ai pas retenu ces directions, et sans les notes il sera dur de vous en montrer plus.

Il y a bien sûr encore pas mal de boulot, je vais repasser progressivement, à temps perdu, dans l’ensemble du POC et de TARS lui-même, faire un coup de clean et de typage massif, gestion d’erreur(s), et surement de refactorisation plus ou moins importante, par exemple la suppression du mode 2D, ce qui aiderait quelques petite performances; mais aussi le fait rencontré que le validateur de chemin n’ait pas l’information disponible de la différence de hauteur/niveau/élévation entre 2 Coords en comparaison, et qu’il sera difficile en l’état d’y arriver. Du coup, on reparle de théorie du système, doit-il gérer Z ou pas, gros débat (ombre portée dynamique, lumière, changement de niveau (hauteur), …).

Quand on pense qu’au départ de ce moment je voulais juste reprendre le dev de l’éditeur…

Y replonger, bien que difficile, chronophage et casse-gueule avec le temps et la mentalité différente aujourd’hui, est amusant, un petit challenge sur le côté, et surtout : il fonctionne, pour ce qu’il est, ses limites et possibilités.

Je me tâte toujours, est-ce que Nahyan peut être exploré en isométrique ou doit-on absolument le voir en 3D ?

Angular : 4 ans, 9 versions

Début 2019 on a Angular 8, et en cette fin 2023 on a reçus la 17, soit 9 versions ! Et pourquoi je vous dis ça ? Tout simplement car j’ai voulu mettre à jour le POC de TARS, et ça ne s’est pas du tout passé comme prévu malgré l’usage du site de migration qui est bien fait.

Le truc c’est que ce n’est pas exempt de soucis qui se pose au fil du temps. Par exemple, certaines commandes vont exécuter l’install (npm i), mais il vous faudra reprendre à la main en précisant le flag --legacy-peer-devs ou encore des résolutions d’arbre de dépendances qui ne se font plus correctement.

J’ai réussi non sans mal à passer à la version 11 mais pas plus loin, la quantité de conflits ou de soucis a explosé, pourtant le projet n’a rien de particulier d’un point de vue Angular.

Du coup j’ai opté pour une autre approche. Le projet n’utilise Angular que comme une coquille de lancement avec l’usage de l’injecteur et du client HTTP. J’ai donc créé un projet frais et j’ai replacé le code en dedans et là : BOOM ! Fallait pas oublier qu’on était passé en mode stricte, ou que le côté standalone a changé la manière de monter un module ou de gérer les composants, bref il ne s’en sortait plus.

On sort l’huile de coude, on repasse partout, on s’arrache les cheveux sur le typage fort qui me manquait à l’époque et on solutionne avec quelques generic. On ajuste la nouvelle mouture standalone avec les imports et providers locaux et ça tourne ! Enfin, oui, mais ça nécessitera quelques heures avant que le builder arrête de péter une durite. À savoir que si vous avez un couac il peut perdre la compréhension de tout les tags Angular et votre erreur c’est 1 détails quelques part… Bonne chance.

J’en profite pour vous filer un tuyaux : penser à définir vos composant en standalone, rajouter ce qu’il vous faut localement comme CommonModule ou HttpClientModule.

Un truc qui continue de m’agacer, c’est ce double état undefined et null, car si vous spécifiez un attribut de classe comme optionnel vous utiliserez un ? à sa fin, mais si vous l’assignez suite à un find d’un tableau par exemple, ce qui peut vous rendre votre type ou null, vous aurez un conflit possible de type, sauf si on parle de test(s) avant assignation ou autre écriture à rallonge; ça manque quand même de cohérence.

Enfin soit, c’était amusant d’y retoucher, avec l’objectif de reprendre son éditeur en main, toujours pour ce projet éternel qu’est Nahyan.

Angular 17 recèle d’un tas de nouveautés qui, je pense, pourraient, avoir leur rôle à jouer, voire en refactorisation, mais je m’avance un peu. Par exemple Signal, la sortie de Zone, la nouvelle syntaxe de templating, etc.

Fusion de la chambre intermix

Suite à l’article précédent j’ai voulu faire un tour de nettoyage et je me suis rendu compte qu’un ancien démon revenait à la charge. Nous avons divisé le code par domaine et contexte de rendu, propre et héritant d’un parent commun, et dans un service je mets le code commun à ce qui concerne Grid, ou Iso etc., de manière à isoler les calculs de l’usage selon le contexte.

Schéma avant fusion

Plus simple avec un schéma, voici la découpe avant fusion. Ce qui nous intéresse c’est la séparation 2D et Gl, puis la découpe par usage/type à savoir Sprite, Grid ou Iso, puis les regroupements de type IsoElement/GridElement, ainsi que des services relatifs aux couches.

On a une sorte de matrice à 3 dimensions en ce qui concerne cette idée. Sauf que programmer ça, en TypeScript, ben c’est pas très évident. En PHP j’aurai pu utiliser des Traits, il existe des mixins en javascript mais non merci, je vous laisse vous faire votre avis mais ce n’est pas à la hauteur. L’héritage multiple n’existe pas (cf mixin), du coup il faut savoir se renouveler et faire preuve d’audace, d’expérimentation et de refontes inévitables. C’est ce que j’ai dû faire, non sans mal.

J’étais parti pour déplacer les fonctions de rendu dans les services par couche (Grid/Iso) et de fusionner Grid2DElement avec GridGlElement, vu que leur différence réside dans le contexte de rendu (2D/Gl). Mais je me suis aperçu que bien que je gagnais en clarté à tout regrouper, on augmentait d’autre part la difficulté de ce même code et des approches. Bref, bien, mais pas bien.

Du coup revirement de situation et revenons sur nos pas de plusieurs mois quand on a justement décidé de diviser par contexte de rendu, quand les lumières sont arrivées (la version solutionnée). Revenons donc à cette idée non divisée et sans emmerder les services déjà très bons tels quels.

C’est la fusion !

Fusionner Grid2D et GridGl, Iso2D et IsoGl, ok, mais on oublie Sprite2D et SpriteGl qui héritent de SpriteElement, il faut commencer par le commencement. C’est donc une refonte jusqu’à Element pour répartir les morceaux des différentes classes Sprite*. Ainsi disparaissent Sprite2DElement et SpriteGlElement au profit d’une nouvelle classe SpriteElement toute équipée.

Quand on parle de fusion on parle bien entendu de gérer le contexte de rendu au sein même de la classe. Ceci peut paraître étrange et contre certains bons principes, mais ces morceaux de code partagent parfois jusqu’à 90% du code, ce qui va contre le principe DRY (Don’t Repeat Yourself) et comme j’ai envie de bisous (KISS : Keep It Stupid Simple), j’ai tout regroupé et cela ne m’a demandé que quelque if peu coûteux, ce qui est très important car on appelle ces bouts de code des centaines, des milliers de fois par seconde (selon complexité de votre projet).

Fusion de Sprite*Element

J’en profite pour illustrer le service de rendu Gl et montrer à partir d’où on le connecte. J’en affiche un peu plus mais ainsi on voit les 2 types de regroupement GridElement et IsoElement. Ne prêtez pas attention à GridBlock, vous le connaissez déjà.

Nous sommes bien parti, continuons. On crée une nouvelle classe GridElement et on met ce que contient Grid2D et GridGl, hop tout dedans et on essaye de faire coller les morceaux. Là où ça se corse c’est de bien segmenter les parties communes et spécifiques, puis quand on arrive à IsoElement c’est encore pire car nous sommes basé sur l’héritage donc on ne réécrit que ce qui a besoin de l’être et là on observe des couacs, des oublis pour la 2D vu qu’on s’est concentré sur Gl depuis les lumières. Par exemple la table en 2D ne fonctionne pas, juste en Gl.

Fusion terminée

Sur papier ça parait plus beau, naturel, élégant, [mettre ici tous les beaux mots que vous désirez]… Mais dans la pratique ça demande pas mal d’efforts, de compréhension, évidemment c’est pour un mieux !

C’est quand même un impact de 33 fichiers dans le projet et son POC de démo, 8 dans TARS même, ainsi que 8 suppressions et 2 ajouts. Ça c’est pour les fichiers, mais en terme de lignes de code, même si je n’ai pas de compteur à cet instant, on a effectué une réduction notable, donc plus facile à maintenir, de par le regroupement aussi.

Preuve que ça fonctionne toujours, même si la table n’est pas gérée encore correctement en 2D.

Garder 2D et Gl ?

Pourquoi garder les 2 ? Car il est très difficile de débuger en Gl, vous ne pouvez pas dessiner aisément un repère ou une trace sans sortir les chars d’assaut et beaucoup d’heures de dev alors qu’en 2D vous êtes libre de manipuler le rendu en direct et ce rapidement.

C’est pour cela que le POC (démo) n’utilise plus les lumières en 2D, le but pour moi ici étant un debug rapide sans ajouter des soucis de performances, qui plus est, connus.

De plus, maintenant que la fusion est faite, on pourrait revoir tout le workflow d’utilisation pour ne plus devoir faire (à l’usage) une scène 2D ou une scène Gl. ainsi en changeant juste le mode, toutes les classes personnelles seraient utilisables, ce qui serait un chouette gain de temps et d’effort. De plus les 2 fonctions ajoutées is2DContext/isGlContext permettent d’agir spécifiquement si besoin était.

Et le fameux ensuite ?

Ah ben oui, ensuite quoi ? Corriger le pourquoi de la table en 2D et tenter de régler un conflit Grid/Iso sur un calcul de positionnement.

Il faut absolument faire un POC purement Grid et non Iso, genre un Mario (S)NES ou Duke Nukem 1-2, un truc tout carré pour voir que les calculs sont bons, juste une grille décorée, pas plus.

Ensuite, mes fameuses particules lumineuses et le miroir :p !

Mais bon, comme d’hab on verra ce qui me stitch comme on dit. Je vais déjà de ce pas fusionner les branches du repo et repartir sur une base saine :).

Edit

Pour ne pas refaire un article juste pour ça, j’ai également fusionné les classes du POC (treasure, door, player), leur code était identique. 3 classes de moins sur les 6 initiales (3x2D et 3xGl). Une bonne chose de faites qui va nous simplifier la vie ultérieurement. Les scènes restent dissociées car différentes, la Gl, plus complète, gère la lumière par exemple, les fusionner ne donnerait rien d’intéressant une fois en release. Au moins le debug (2D) peut se faire sans gêner le résultat final (Gl). Nous voilà dans un état propre, quelques corrections de bugs ou de manques seraient à faire pour solidifier avant d’avancer plus.

Masque splendide

Tel Stanley Ipkiss, TARS joue maintenant avec un masque lors des rendus d’objets occupant plusieurs cases dans notre contexte isométrique. Mais pourquoi ?

La table passe sur le Héro car elle est rendue après.

C’est là qu’il faut vous expliquer comment ça fonctionne, ce qui n’est pas une mince affaire. La table occupe 2 cases, mais comme tout Element, il a une coordonnée qui ici nous dit {x: 8, y: 2} (rappel on commence à zéro) et notre Héro, lui, arrive sur la case {x: 9, y: 1}, ce qui de part notre mécanique de rendu Isométrique dessine le Héro avant la table et donc la table écrase le dessin du Héro. Vous suivez jusque là ?

Ceci illustre bien l’ordre de rendu (dessin), de haut gauche, vers la droite jusqu’en fin de ligne, on passe à la ligne suivante et on repart de gauche à droite.

1 problème ?

On a donc un problème, le Héro devrait être dessiné devant la table, ce qui correspond à notre logique visuelle. Même si on inverse le sens de dessin, en colonne au lieu de ligne, on aura le même soucis avec l’autre table.

Après de longues recherches et essais, une seule solution : la manifestation ! découper l’image en 2 pour occuper chacune une case. Car le problème n’est pas que cette erreur de dessin mais aussi le pathfinder qui passe au travers de la case qui n’est pas affectée (en mémoire), elle ne l’est que par vos yeux; et enfin la lumière qui voit la table tantôt d’un bout (loin), tantôt de l’autre bout (proche) et donc l’éclaire différemment.

3 problèmes ?

Le pathfinder se base sur la présence d’un Element sur la grille que l’on fabrique sur base du subsetMap, et la lumière, chacun ayant son algorithme. Le rendu se base directement sur la subsetMap. On serait tenté de dire qu’il faut solutionner les 3 individuellement et c’est ainsi que j’avais commencé.

J’ai donc ajouté une notion d’additionnalCoords (coordonnées additionnelles) dans la définition de l’élément table et ce pour les 4 orientations NESW, décrivant, dans le cas de notre table orientée vers le Nord et dont la base se trouve en bas gauche de l’image, une case additionnelle en x: 0, y: -1.

Le choix de la coordonnées {0,0} vient du sens de rendu et du sens de détection du raycasting quand on clic droit sur un Element (coffre, porte). La dernière case dominera les précédentes comme démontré par le problème. Le raycasting parcours l’inverse du rendu pour trouver l’élément le plus devant. Notre {0,0} sera donc cette dernière case a être rendue et correspondra à la coordonnée de l’Element, les additionalCoords représente l’ensemble des autres cases en mode relatif (ex: {x: -1, y: 0} pour la table orientée vers l’Est).

Raycasting ? 4 problèmes donc ?!

Maintenant que vous comprenez la structure, le pourquoi du comment et la mécanique céleste, nous allons tenter de corriger les problèmes un à un.

Le plus facile est le pathfinder, qui se base sur des cases occupées pour dire que l’on ne peut s’y rendre. Actuellement le Héro se déplace sur la seconde case de la table « dessous » car la table se dessine après. Il faut donc arriver à lui dire « hey tiens voilà des coordonnées additionnelles à retirer !« .

Aussitôt dit, aussitôt fait, quand on prépare le pathfinder sur base de la subsetMap, on demande à tous les Elements s’ils ont des coordonnées additionnelles et ensuite on les retire du résultat final.

Fin ! 8D

Ah ah ah Oui mais non ! Ça fonctionne, certes, le Héro ne traverse plus les tables, ce n’est plus un drôle de fantôme. Mais ! La lumière n’est pas bonne, le raycasting reste un problème et évidemment notre problème de rendu reste identique, la table passe devant le Héro.

J’ai tenté une théorie visant à dire au GridBlock de prendre en compte des pointeurs, une forme de référence entre cases, mais en vain. Un GridBlock est un multi-ensemble d’Elements, point.

Je vous épargne toute la frustration et brisage de méninges, il m’aura fallu une bonne semaine pour trouver la seule piste envisageable.

Un système de masque

Dit comme ça, ça semble être la solution ultime, et c’est pas loin, mais incomplet. On garde les additionnalCoords et on s’en sert à l’ajout de l’Element sur la Map lors du chargement pour l’ajouter à chacune des cases, le même élément (la même instance, pas une copie). Notre table est donc physiquement présente en mémoire sur 2 cases.

Cela résout le problème de pathfinder et on peut retirer ce que nous avons fait précédemment. Le raycasting est aidé par cette approche mais il faudra l’aider (cf le rendu), nous verrons ça en fin d’article. Il nous reste la lumière et le rendu.

Table ajoutée 2 fois sur la coordonnée de l’Element au lieu des cases spécifiques.
Chacune des 2 cases de la table rend la même image, donc elle « fusionnent » visuellement.

L’idée du masque est de dessiner une partie de l’image sur chaque case correspondante, évitant de demander au graphiste de préparer un grand nombre d’images individuelles et de devoir se battre avec son éditeur de map, ce qui n’est pas gérable.

Chaque case correspond à un rendu à faire, la zone bleue donne B et la zone orange donne A.

Modification du système de rendu

Dans le cas où notre Element a des additionnalCoords il faut appliquer le masque, sinon le rendu classique qui va bien. Pour y arriver, il nous manque quelque chose, comment savoir quelle partie dessiner ? Actuellement nous dessinons selon la coordonnée de l’Element, du coup dans ce cas on dessine une table entière selon ses coordonnées ce qui donne l’effet de fusion illustré ci-avant.

Pour changer ça, il faut dire à notre système de rendu que ce n’est pas la coordonnée de l’Element qu’il faut utiliser, grosso modo. On va commencer par ajouter la notion de coordonnées au gridBlock, qui n’en avait pas besoin jusque là. Et qu’ils passent cette coordonnée à la fonction draw() pour que l’information arrive au système de rendu.

Et après on fait comment ? On se questionne, a-t-on des additionnalCoords ? Si oui, à laquelle correspond le x,y donné par le rendu ? De la on calcul un masque prenant en compte le déplacement dans l’image pour n’afficher que ce qui nous intéresse dans notre cas. Illustrons ça avec la conquête des erreurs de rendu.

Il y a bien un rendu par case, en ayant forcé la largeur de la source à une largeur de case, mais en ayant oublié la déformation de destination.
Correction de la destination, tout le monde à une case de largeur.
Premier résultat concluant.

Le Héro ne passe plus derrière la table ! Mais ?! Qu’est-ce-que c’est que cette drôle de table coupée ? On a un soucis, ok mais lequel ? On dirait que la « fenêtre » du masque n’est pas au bon endroit, mais pourquoi que dans la table orientée à l’Est (à gauche) ?

Pour déterminer ce qu’il se passe, j’ai essayé de dessiner le premier morceau, et on voit que le même problème apparait.

Tentons de voir à quoi ressemble chaque morceau sans considérer la case originale. Nous n’avons pas le même résultat, en vert on a une fenêtre aux bonnes dimensions et bien positionnée, en rouge non.

Pour tenter de comprendre, j’ai modifié la table Est en inversant son origine (en haut gauche au lieu de bas droite) et en modifiant son rendu. J’ai également ajouté un fond à l’image pour comprendre les dimensions gérées.

Inversons le rendu et affichons un fond à la transparence.

En rendu inversé pour la table Est ça fonctionne ! Mais pourquoi ? Qu’est-ce qui change ? Et là une théorie survient, le fait que la base soit au delà d’une distance de case dans l’image quand on calcule le masque, provoque ce décalage. Je vais vous passer les calculs et les correctifs spécifiques au masque, mais en résumé, on doit déplacer la coordonnée source dans l’image selon la théorie isométrique (par demi case en X/Y) mais aussi corriger le résultat par cette même théorie, car il faut rationaliser ce décalage au delà d’une distance d’une case. De plus ce dernier correctif doit être appliqué à l’inverse au positionnement de destination. J’ai tenté un dessin, mais même pour moi il n’a pas été simple de le schématiser pour le coder.

Résultat corrigé du rendu.

On a donc notre Héro devant la table, des tables bien positionnées (celle de l’Est a été déplacée pour les tests) et on a en même temps solutionné la lumière qui éclaire équitablement les 2 morceaux. Ceci est un effet de bord qui tombe à point et qui se base sur le fait que c’est la même instance du même Element qui est référencé dans les 2 cases et donc quand la lumière s’applique, c’est le plus proche qui est choisi et appliqué, par effet de propagation. Enfin, c’est ma déduction car je ne me suis pas amusé à le démontrer.

Bon ok j’ai regardé un petit peu en écrivant ces lignes, il se pourrait que la table aie une addition de quantité d’éclairage par case, il faudra donc vérifier ça et décider du comportement. Vu les formes découpées, je ne suis pas sûr qu’un éclairage non uni soit une bonne idée.

Et le raycasting ?

On y vient, comme dit plus haut, c’est ici que ça se passe. On est vite tenté de dire qu’on a fini car nos problèmes visuels s’en sont allés, mais que nenni, il nous en reste un beaucoup moins visible : le raycasting. Pour ceux qui n’ont pas suivi, le raycasting (lancé de rayon), permet de déterminer dans notre cas ce sur quoi on clic (quand on clic droit sur le coffre, la porte, ou même un arbre).

Donc ici, pour chaque case, il se croit être à l’origine et m’est avis que ça va pas nous aider. Il va falloir, car ce n’est point encore fait, lui expliquer à lui aussi le système de masque. Par extension, on pourra peut-être globaliser et « simplifier ».

Prochaines étapes

En me relisant, je remarque que je parle souvent de l’éditeur mais pas cette fois; ni du jeu que nous allons démarrer comme projet vivant de l’usage de notre moteur TARS, et oui toujours dans le monde de Nahyan, nous y reviendrons prochainement; Mais plutôt vous parler de système de particules et de miroirs qui me sont venu à l’esprit et tant qu’à faire, une démo technique avec une petite explosion dont chaque particule est luminescente et se reflète dans des miroirs…

Smooth crimilight

Hier nous parlions de lumière, de beaux éclairages et de couleurs. Aujourd’hui, nous allons parler de douceur et de déplacement, mais parlons aussi de Disco et d’épilepsie !

Actuellement, la lumière et ses effets sont actualisés à certains moments, nous évitons ainsi les calculs perpétuels inutiles. Mais nous aimerions que la lumière suive notre héro Squellettore quand il se déplace et non pas que quand il traverse une case, ce qui nous donne un clignotement de refresh global quand on change de case. Ça nous fait un effet rétro mais on peut mieux faire.

L’idée est de diviser la lumière en 2 dès que l’on commence à bouger. Une lumière à X% de là où on part et une seconde à Y% là où on va (la case d’à côté dans le sens actuel). La somme donnera un résultat équivalent mais permet de graduellement faire transiter la lumière d’une case à une autre en douceur.

En regardant l’image ci-dessus, en prenant les 2 points vert comme étant le centre de chaque case et en considérant 100% la distance entre les 2, on peut facilement se représenter un delta qui représente la quantité de déplacement au départ de l’origine. Ainsi, tant qu’on est sur la case d’origine on aura X% = 100% – delta et Y% = delta. Je vous épargne les quelques complexités et conditions dues à mon implémentation initiale.

C’est là que le Disco est né au fond d’un donjon… Ça c’est quand modifie la force de la lumière, entre autres… et ce n’est pas ce que l’on veut exactement. Il faudrait altérer la lumière par case, pas sa force.

Pour arriver à cela, j’ai dû améliorer les informations de lumière en ajoutant la notion d’intensité qui altère le résultat sur la force de la lumière. Vous me direz « c’est quoi la différence ? » et je vous dirais que la force donnera la distance à laquelle la lumière éclaire (5 cases par exemple pour Squellettore et 3 pour le coffre) tandis que l’intensité altère la valeur par case uniformément. C’est ce qui a permis de faire glisser la lumière d’une case à l’autre.

Oh douceur du déplacement progressif remplaçant le changement saccadé brutal. Joie !

À cela on ajoute un code refactorisé, simplifié, plus facile à suivre et documenté. Ahhh TODO que j’aime tant… te retirer. C’est bon, on la garde !

Illumineux

Ça y est, j’ai pris à bras le corps le sujet des lumières qui étaient encore à l’essai, ramasser les TODOs (pas tous) et figer dans le système et son POC, ces mécaniques.

Ainsi Squellettore notre héro et le coffre sont détectés dans la subsetMap comme éléments lumineux. Ils contiennent une ébauche d’informations de lumière à savoir une couleur, une force et un état allumé/éteint.

Là où nous appliquons une modification de luminosité (brightness) basé sur la distance de la source de lumière, dorénavant nous appliquons la lumière, c’est à dire sa couleur selon sa distance. Ainsi, notre magnifique shader qui permet cette opération est enfin utilisé par le système et non plus via mes essais manuels.

Évidemment cela ne s’est pas fait en 2 tours de cuillères à pot… Il a fallu définir une information de lumière, faire les fonctions d’usage, les modificateurs de variables, faire la différence entre être une lumière et illuminer, ce qui est fort important je vous l’assure pour le bon nommage de vos éléments; et comme dit ci-avant, la détection de ces lumières dans la map automatiquement. Ceci a engendré des correctifs bien utiles et des améliorations en retirant la redondance et simplifiant certains déroulements.

Ensuite nous avions des murs mal illuminés, c’est à dire que les murs, ou éléments de la zone, Sud et Est appartiennent à un gridBloc (carré sur le sol) mais en fait concernent leur case voisine, car vous les observez depuis une autre case, donc leur illumination ne doit pas se faire depuis la case les possédant mais bien par leur case voisine respective.

En bas à droite de l’image ci-dessus vous verrez un mur quasi noir derrière un mur éclairé. C’est du fait que l’élément est masqué virtuellement par un élément non traversable. En conséquence il ne reçoit aucune lumière et ne subit en fait que l’éclairage global. Cela relève du choix personnel lors de votre implémentation en utilisant le moteur, j’ai fait ce choix pour ma démo.

Un autre point que cet article va traiter est la rotation de Squellettore, notre intrépide héro, qui, tel un Derek Zoolander, peut enfin illustrer et parfaire son mouvement de rotation gauche ET droite !

Son déplacement, suite au résultat du pathfinder, est une suite de points à suivre tel Hansel et Gretel. Quand un changement de direction survient actuellement on applique la réorientation du personnage sans autre cérémonie. C’est là que ça commence, il faut s’insérer temporairement dans le mouvement du déplacement le temps d’animer une rotation puis de relancer le déplacement, le tout sans se planter.

Je vous passe la construction d’une technique de détection de direction de rotation, et les emmerdes dues aux croisements d’informations sur les animations en cours et les modifications de l’animation courante qui se chevauchaient, annulant ainsi ce qu’on essaye de faire.

Du coup, en s’abonnant à l’événement de fin d’animation et en détectant que l’on change de direction, l’on peut intercéder, couper le déplacement, lancer l’animation de rotation dans le bon sens, attendre la fin de celle-ci et une fois fait relancer la prochaine étape du déplacement. Aussi simple, même s’il m’aura fallu 6h pour affronter tous les soucis desquels je vous épargne un tantinet.

Il reste cependant à mieux gérer la rotation pour l’utiliser également quand on cible un objet à côté de nous pour interagir avec. Si on tourne en se déplaçant, pourquoi regarder d’un coup un objet à côté de nous.

Dans la gamme du « reste à faire », j’aimerai tenter d’adoucir le changement d’éclairage au déplacement, plus gourmand, complexe, mais pas forcément une mauvaise idée. À suivre donc.

On a donc ici, une amélioration, et non des moindres, de l’atmosphère de notre rendu, de la gestion générale des lumières et un essai d’animation intermédiaire qui convainc plus encore la démarche de notre héro.

Il y a toujours de quoi faire en éclairage, ombres et ombrages et effets visuels variés, on peut citer le normal mapping, des particules, des shaders d’altérations, et bien plus encore, mais tout cela relève surtout de ce que vous voulez faire dans votre projet. Le POC ici arrivent tout doucement à sa fin et un projet devrait débuter sous peu dès que j’aurais revu l’architecture globale et tenter d’éliminer les TODOs restant.

TARS n’est pas parfait, loin de là, mais il faut le mettre à l’épreuve et, au travers d’un projet, corriger et améliorer ce qui sera nécessaire.